

FRAUNHOFER RESEARCH INSTITUTION FOR ADDITIVE MANUFACTURING TECHNOLOGIES IAPT

ADDITIVE MANUFACTURING SURFACE FINISHING STUDY

BENCHMARK OF SURFACE FINISHING PROCESSES FOR METAL AM COMPONENTS

SURFACE FINISHING STUDY

STATEMENT OF THE PROBLEM

Current Situation

- Which processes are suitable for our components?
- What are strengths and weaknesses of the processes?
- Which component properties are achievable?
- Which surface finishing is achievable?
- What are costs of the processes?

Solution

A study of the relevant surface finishing processes

- Objective comparison of different processes
- No expertise needed
- Quick decision on the most appropriate surface finishing processes for your component

STUDY CONTENT AND STRUCTURE

Materials investigated
Titanium (Ti-6Al-4V)
Aluminium (AlSi10Mg)
Stainless Steel (1.4404)

Benchmark criteriaSurface roughnessSurface hardnessErosion rateEdge roundingPenetration depth

Processes to be investigated Machining with undefined cutting edge

- Abrasive Blasting
- Vibratory Finishing

Finishing with chemical additives

- Isotropic Superfinishing
- Micro Machining Process (MMP)
- Chemical Polishing

Finishing with electric power

- Electro Polishing
- Metal DryLyte

Solidification with undefined cutting edge

••• • Shot Peening

More processes to be added in the future.

Order free excerpt of the study with benchmark results by surface.finishing@iapt.fraunhofer.de

