Skip to content

The Future of Metal 3D Printing Technologies from a New Perspective

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on email
Email
Share on print
Print

The global manufacturing market seems to be in a state of flux, throwing the metal additive sector into a totally new realm of existence. The last significant global manufacturing downturn in 2009 came largely before metal additive technologies had established itself. In 2009, AM metal implants were only just beginning to see their earliest patients and metal AM in aerospace was still entirely in the R&D lab. While it would be premature to declare anything definitive about metal AM, we believe it’s time to view metal additive technologies, and their near-term futures, from the standpoint of both actual and attainable applications from which to base growth projections and investment decisions in what is a tightening manufacturing scenario.

SmarTech maintains that additive technologies will play a key role in creating more agility and responsiveness in global metal manufacturing activity to allow better weathering of global economic speed bumps. However, the advantages aren’t truly universally applicable to all given the relatively high barrier to entry that remains, the lower overall state of commercial readiness of emerging high-potential technologies, and the resulting lack of vision and understanding on how to apply each mainstay technology effectively to create more nimble, cost effective metal component supply chains and eliminate costs.

Of the three primary families of metal additive technologies, powder bed fusion variants remain the most widely utilized and industrialized systems with varying degrees of ‘factory readiness’ depending on the provider. Directed energy deposition systems have played a niche role for many years and continue to subtly infiltrate manufacturing deployments by integrating with CNC technology for hybrid use cases. Finally, bound metal printing variants, which consist of both binder jetting and deposition based systems, both share a common metallurgical principle of final-stage sintering and are still perhaps just coming onto the horizon of metal additive manufacturing (but with much potential).

Manufacturing downturns are inevitable. Whether next year or years from now, metal additive technologies have a unique opportunity to present a value proposition to the manufacturing community as tools to help weather these recurring challenges. SmarTech Analysis has just produced the first ever unified global analysis on metal additive manufacturing parts & applications. Using the perspective of production volumes of metal parts produced additively by functional application, we can demonstrate what is likely to become the potential future of each of the primary metal additive technologies, as well as emphasize their potential value as solutions for leaner manufacturing.

Download Full Note:

The Future of Metal 3D Printing Technologies from a “New” Perspective